Practicality and Time Complexity of a Sparsified RNA Folding Algorithm
نویسندگان
چکیده
Commonly used RNA folding programs compute the minimum free energy structure of a sequence under the pseudoknot exclusion constraint. They are based on Zuker's algorithm which runs in time O(n(3)). Recently, it has been claimed that RNA folding can be achieved in average time O(n(2)) using a sparsification technique. A proof of quadratic time complexity was based on the assumption that computational RNA folding obeys the "polymer-zeta property". Several variants of sparse RNA folding algorithms were later developed. Here, we present our own version, which is readily applicable to existing RNA folding programs, as it is extremely simple and does not require any new data structure. We applied it to the widely used Vienna RNAfold program, to create sibRNAfold, the first public sparsified version of a standard RNA folding program. To gain a better understanding of the time complexity of sparsified RNA folding in general, we carried out a thorough run time analysis with synthetic random sequences, both in the context of energy minimization and base pairing maximization. Contrary to previous claims, the asymptotic time complexity of a sparsified RNA folding algorithm using standard energy parameters remains O(n(3)) under a wide variety of conditions. Consistent with our run-time analysis, we found that RNA folding does not obey the "polymer-zeta property" as claimed previously. Yet, a basic version of a sparsified RNA folding algorithm provides 15- to 50-fold speed gain. Surprisingly, the same sparsification technique has a different effect when applied to base pairing optimization. There, its asymptotic running time complexity appears to be either quadratic or cubic depending on the base composition. The code used in this work is available at: .
منابع مشابه
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics
MOTIVATION RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search ...
متن کاملTime and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding
In the past years, a large set of new regulatory ncRNAs have been identified, but the number of experimentally verified targets is considerably low. Thus, computational target prediction methods are on high demand. Whereas all previous approaches for predicting a general joint structure have a complexity of O(n) running time and O(n) space, a more time and space efficient interaction prediction...
متن کاملSequence analysis SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics
Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of OðnÞ. Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optim...
متن کاملAn Efficient Algorithm for Upper Bound on the Partition Function of Nucleic Acids
It has been shown that minimum free-energy structure for RNAs and RNA-RNA interaction is often incorrect due to inaccuracies in the energy parameters and inherent limitations of the energy model. In contrast, ensemble-based quantities such as melting temperature and equilibrium concentrations can be more reliably predicted. Even structure prediction by sampling from the ensemble and clustering ...
متن کاملA Study of Accessible Motifs and RNA Folding Complexity
mRNA molecules are folded in the cells and therefore many of their substrings may actually be inaccessible to protein and microRNA binding. The need to apply an accessibility criterion to the task of genome-wide mRNA motif discovery raises the challenge of overcoming the core O(n(3)) factor imposed by the time complexity of the currently best known algorithms for RNA secondary structure predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioinformatics and computational biology
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2012